
Volume 1, No. 1, Issue 2

IJEMT Research Article

Review paper on Web Application for Streaming

and Broadcasting

Shekhar Kumar, Rituraj Pandey

kshekhar2807@gmail.com, rp.weki.24@gmail.com

Abstract. The evolution of online media consumption has undergone a paradigm shift with the

advent of web-based streaming and broadcasting applications[3].This paper provides a

comprehensive overview of cutting-edge projects using MERN technologies (MongoDB,

Express.js, React.js, Node.js), Nginx server, and WebRTC to RTMP Simple Realtime Server

(SRS).The integration of these technologies is aimed at improving the performance, scalability, and

real-time capabilities of streaming applications. The implementation of this project responds to the

growing demand for seamless and high- quality delivery of multimedia content on the Internet

Keywords: Broadcasting and Streaming, React.js, Nginix, WebRTC, Simple Realtime

Server, Adaptive Bitrate Streaming.

Introduction

The rise of web-based streaming and broadcasting has changed the way content is distributed and

consumed around the world. This project aims to leverage the strengths of the MERN stack. The

MERN stack includes MongoDB as the database, Express.js as the server-side framework,

React.js as the user interface, and server-side runtime. MERN's unique benefits, such as flexibility,

scalability, and ease of development, make it an ideal choice for building sophisticated streaming

applications.

To optimize the delivery of multimedia content, this project integrates a Nginx server as a reverse

proxy server. Nginx's efficient handling of concurrent connections and low resource utilization

complement the real-time requirements of streaming applications. Its role in load balancing and

static content delivery improves overall performance and ensures a seamless streaming experience

for end users.

One of the key challenges addressed in this project is the conversion from WebRTC (Web Real-

Time Communication) to RTMP (Real-Time Messaging Protocol).

While WebRTC allows direct real-time communication between web browsers, conversion to

RTMP enables compatibility with a wider range of devices and streaming platforms. Simple

Realtime Server (SRS) integration acts as a bridge between WebRTC and RTMP, ensuring

interoperability and expanding the reach of streaming applications.

This paper analyzes the technical complexity of the project, including design considerations,

architecture, and the specific functionality that each component enables.

Additionally, it addresses important requirements that were carefully considered during the

development stage, including:

Low latency, high scalability, and robust security measures.

mailto:kshekhar2807@gmail.com
mailto:rp.weki.24@gmail.com

Volume 1, No. 1, Issue 2

IJEMT Research Article

The following sections describe the architecture of the MERN stack, Nginx's role in optimizing

content delivery, and implementation details of SRS for seamless WebRTC to RTMP conversion.

Additionally, it discusses how these technical decisions affect the overall performance and user

experience of his web- based streaming and broadcast applications.

LITERATURE REVIEW

S.No Author Title Year Technology Advantage Disadvantage

1 Samira

Afzal,

Vanessa

Testoni,

Christian

Esteve

Rothenberg,

Prakash

Kolan,

Imed

Bouazizi

A holistic

survey of

multipath

wireless

video

streaming

2019 MPRTP,

RTRA,

MPLOT

It gives a deep

knowledge

about packet

loss, video

compression,

error

concealment,

etc.

It gives us

theoretical

knowledge about

the topic.

2 A.Nithya,M

.Yashwant,

K.P.Dhivye

sh

 Anand

, M.Naveen

Kumar

A real time

video

streaming

platform for

device to

mobile

networking

March

2020

VSS and SV It improves the

system

transmission

capacity and

saves organize

data transfer

capacity, cost.

Both

 technol

ogies require a

stable internet

connection with no

packet loss.

3 Danny

Ivanno

Ritonga,

Tri Danu

Satria,

Aqsa

Mulya3

implementati

on of open

broadcaster

software

studio in

music

performance

management

through live

streaming

December

2021

OBS

STUDIO

Software

This research

paper helps us

to understand

the OBS Studio

 soft

ware

technology

It focuses on the

use of the hardware

devices over the

software.

4 Jesus

Aguilar-

Armijo,

Christian

Timmerer,

Herman

hellwa

Segment

perfetching

and caching

at the edge

for adaptive

video

streaming

3 March

2023

MEC,

HTTP,

HAS, ABR

algorithm,

CDN, ML

They use the

serve clients

directly from

an edge node,

reducing

latency and

increasing their

QoE.

wastage of

 network

resource

Increase

buffering

Time

this approach

requires more

storage and

computing power

Volume 1, No. 1, Issue 2

IJEMT Research Article

at

the edge

5 Lujie

Zhong,

Optimization

for adaptive

24 March

2023

HTTP(DAS

H), VR,

A heuristic

method

named H-

DDA

For live

 streaming

services,

transcoding the

 Mu Wang,

Changqiao

Xu,Shujie

Yang

video

streaming on

edge cache

assisted

network

 DDA,

HDDA

which reduces

the

computation

complexity in

comparison

with

DDA,

while

maintaining the optimal

approximation

is intr oduced.

video content into

multiple

representations

consumes

large computation

resources.

6 Joon-

Young

Jung, Jee

Won Lee,

Eun Hee

Hyun

Performance

analysis

according to

segment

length and

buffer length

of video

streaming

7

August

2023

DASH,

MPEG

DASH

algorithms

Short segments

can quickly

adapt to

network

changes, and

long buffer

lengths ensure

a more stable

display

environment.

Appropriate

segment lengths

must be selected,

as short segment

lengths can

reduce video

compression

efficiency and

 in

crease

transmission

overhead.

Volume 1, No. 1, Issue 2

IJEMT Research Article

7 Yili Jin,

Junhua Liu

Fangxin

Wang,

Shugang

Cui

Edge-

Assisted

Multiuser

360° Video

Streaming

3

 Apr

il

2023

VR,

Ebublio,

CFP,

LTO

It solves the

long- term

optimization

problem

with both

the

Lyapunov

framework and

dual

composition as

well as sub

gradient

descent.

360° video is

typically provided

in the form of an equirectangular projection (ERP). This projection method is easy to understand. However, the distribution of pixels is highly unbalanced. Pixels around the poles are dense, while pixels around the

equator are sparse.

Proposed System

MERN Stack Integration

The system's architecture is based on the MERN stack, providing a comprehensive and flexible

foundation for web application development.

MongoDB acts as the persistent data store, Express.js handles the server-side logic, React.js

manages the UI, and Node.js facilitates the server-side runtime environment.

This stack ensures a modular and scalable structure, making it easy to integrate additional features

and extensions.

Fig. 1. Implementation and working of application.

3.1 WebRTC for Real-Time Communication

WebRTC is used to enable direct real-time communication between clients and facilitate low-

latency video streaming and transmission.

This technology facilitates peer-to-peer communication, allowing users to share audio, video, and

data in real-time.

WebRTC integration improves the user experience by minimizing latency and providing a

Volume 1, No. 1, Issue 2

IJEMT Research Article

seamless streaming environment.

3.2 Nginx Server

Nginx is used as a high-performance web server and reverse proxy to efficiently process client

requests.

Its ability to manage concurrent connections and handle static content delivery makes it an

ideal choice for streaming applications.

Nginx plays an important role in load balancing, ensuring optimal resource utilization and

improving overall system performance.

3.3 SRS for WebRTC to RTMP Conversion

To extend streaming application compatibility, Simple Realtime Server (SRS) is integrated to

convert WebRTC streams to RTMP.

SRS acts as a bridge between WebRTC and traditional RTMP streaming platforms, allowing

users to share their content with a wider audience.

This conversion process is seamless and transparent for users, providing a consistent streaming

experience.

Requirements

Functional Requirements:

User

Authentication

Content

Management

Live Streaming Broadcasting Nginx

 Serve

r Integration

-Implement

secure user

authentication

systems to

control access to

streaming and

 broadc

ast applications.

-Leverages the

MERN

 stac

k (MongoDB,

Express.js,

React.js,

Node.js)

 for

seamless

- Integrate

WebRTC for real-

time

communication

between users.

- Implement

SRS (Simple

 Realtime

Server) to convert

WebRTC streams

to RTMP for

better

compatibility

 and

performance.

-Ensure low-

latency streaming

-Integrate WebRTC

for real-time

communication

between users.

-Implement SRS

(Simple Realtime

Server) to convert

WebRTC streams to

RTMP for better

compatibility

 an

d performance.

- Ensure low-latency

streaming

capabilities for a

seamless user

experience.

- Allows

users to initiate

and manage

live broadcasts

through

 the

application.

- Implem

ent functions

 for

scheduling,

starting,

 and

stopping

transfers.

- Configure Nginx

servers for

load

balancing

 an

d scalability.

-Implement

 secu

re HTTPS

connections with

Nginx for encrypted

data transfer.

Volume 1, No. 1, Issue 2

IJEMT Research Article

integration and

efficient user

management.

capabilities for a

seamless user

experience.

1. Performance Requirements:

Scalability Low Latency High Availability

- Design your application

architecture to handle a scalable

number of concurrent users and

streams.

- Optimize your server

configuration, especially Nginx,

to efficiently distribute incoming

traffic.

-Achieve low-latency

streaming by optimizing

the communication

protocol between WebRTC

and RTMP.

- Implement a buffering

strategy to minimize delays

for live broadcasts.

-Ensure high availability

through redundancy and

failover mechanisms.

-Implement backup servers and

monitoring systems to quickly

detect and resolve issues.

2. Security Requirements:

Data Encryption Access Control: Secure APIs

-Implement end-to-end

encryption for user data and

streaming content.

–Use HTTPS protocol for

secure communication

-Enforce role-based access

controls to limit unauthorized

access to sensitive functions and

data.

-Implement secure session

management to protect user

sessions from unauthorized

access.

- Ensure that the APIs used

for communication between

frontend and backend are

secure.

-Implement token-

based authentication for

API requests.

Volume 1, No. 1, Issue 2

IJEMT Research Article

Fig 2.1 Data Security by Encryption

3. Compatibility Requirements:

Cross-Browser Compatibility Platform Independence

-Develop responsive front ends that are

compatible with popular web browsers

(Chrome, Firefox, Safari, etc.).

–Test and ensure consistent performance

across different browsers and devices as in [1].

Make sure your application is platform-

independent and supports different operating

systems such as Windows, macOS, and Linux.

Fig 2.2 Cross browser support

Performance and Quality Analysis

The success of web-based streaming and broadcasting applications is highly dependent on their

performance and the quality of the streaming experience they provide. This section describes the

performance metrics and streaming quality achieved by applications built with MERN

technologies (MongoDB, Express.js, React, Node.js), Nginx servers, and transformations

Volume 1, No. 1, Issue 2

IJEMT Research Article

implemented with SRS (Simple Realtime Server).

Performance Metrics

Latency Analysis

One of the most important performance metrics for streaming applications is latency. The time

it takes for a video image to travel from the source to the viewer's screen directly impacts the

real-time nature of the content.Our implementation minimizes latency by using WebRTC for

low-latency communication and SRS for fast conversion to RTMP.[4]

Throughput and Bandwidth Utilization

Efficient use of bandwidth is critical to a smooth streaming experience.Our application

optimizes throughput by using Nginx servers to serve content, minimizing buffering and

maximizing usage of available bandwidth.[5]

Scalability

Application scalability is evaluated under various loads. Through load testing, assess how well

your system can handle increasing numbers of concurrent users and ensure that performance

remains stable even during peak usage.

Quality Analysis

Video and Audio Quality

In streaming applications, video and audio quality are of paramount importance. Evaluate

resolution, bitrate, and codec efficiency to ensure delivered content meets industry standards for

high-definition streaming. [2]

Adaptive Bitrate Streaming (ABR)

To improve the user experience, our application integrates adaptive bitrate streaming. This

feature dynamically adjusts the quality of the video stream based on the viewer's network

conditions, ensuring a continuous and uninterrupted streaming experience.[6]

Error Handling and Recovery

System resilience to errors such as packet loss and network fluctuations is critical to

maintaining stable streaming connections.

Analyze the error handling mechanisms implemented in your application and assess recovery

speed to provide a seamless streaming experience.

Conclusion and Future Work

In conclusion, the development and implementation of the web-based streaming and

broadcasting application utilizing MERN (MongoDB, Express.js, React.js, Node.js)

technologies, Nginx server, and SRS (Simple Realtime Server) have yielded a robust and

efficient solution for real-time content delivery. Through the integration of these technologies,

the project has successfully achieved its primary objective of converting WebRTC to RTMP,

providing a seamless and reliable streaming experience.

The MERN stack has proven to be instrumental in building a scalable and responsive web

application. MongoDB's NoSQL database architecture, coupled with Express.js for server-side

Volume 1, No. 1, Issue 2

IJEMT Research Article

development, React.js for dynamic and interactive user interfaces, and Node.js for event-driven

server architecture, collectively contribute to a well-structured and high-performance system.

The utilization of the Nginx server further enhances the project's capabilities by acting as a

reverse proxy server and load balancer. Nginx efficiently handles concurrent connections and

optimizes content delivery, ensuring low latency and high throughput for users accessing the

streaming application. Its robust performance and ease of configuration make it an invaluable

component in the streaming architecture.

The incorporation of the Simple Realtime Server (SRS) to convert WebRTC to RTMP

showcases the project's commitment to delivering a versatile streaming solution. SRS

effectively bridges the gap between the widely used WebRTC protocol and the RTMP standard,

facilitating seamless compatibility and broadening the scope of supported devices and

platforms. This integration is crucial for catering to a diverse user base and ensuring a consistent

streaming experience across various devices and network conditions.

Future Work:

Despite the successful integration of MERN, Nginx, and SRS in the current project, there are

several areas where future enhancements and optimizations can be explored to further improve

the streaming application:

1. Scalability: Investigate and implement strategies for horizontal scaling to accommodate a

growing user base and increasing demand for streaming services. This could involve the

deployment of multiple instances of the application and load balancing techniques.

2. Security Measures: Strengthen security protocols, such as implementing secure socket

layers (SSL) for data encryption, enhancing user authentication mechanisms, and conducting

regular security audits to identify and address potential vulnerabilities.

3. Content Delivery Network (CDN) Integration: Explore the integration of a CDN to

optimize content delivery and reduce latency for users located in different geographical

regions. This would contribute to a more efficient and global streaming experience.

4. Enhanced User Interactivity: Implement features that enhance user engagement, such as

real-time chat, audience participation tools, and personalized content recommendations. These

additions can contribute to a more immersive and interactive streaming environment.

5. Advanced Analytics and Monitoring: Develop comprehensive analytics and monitoring

tools to gather insights into user behavior, stream performance, and system health. This data

can be valuable for making informed decisions, optimizing content delivery, and addressing

potential issues proactively.

In conclusion, the current project has laid a solid foundation for a web-based streaming and

broadcasting application using cutting-edge technologies. The outlined future work provides a

roadmap for further refinement and expansion, ensuring that the application remains at the

forefront of the dynamic and rapidly evolving streaming landscape. As technology continues to

advance, these future enhancements will be pivotal in maintaining the project's competitiveness

and relevance in the streaming industry.

References

[1] A. Nithya, M. Yashwant, K. P. Dhivyesh Anand, M. Naveen Kumar- “A REAL-TIME

VIDEO STREAMING PLATFORM FOR DEVICE TO MOBILE NETWORK (March 2020)

Volume 1, No. 1, Issue 2

IJEMT Research Article

[2] Samira Afzal, Vanessa Testoni, Christian Esteve Rothenberg, Prakash Kolan, Imed

Bouazizi -” A holistic survey of multipath wireless video streaming”.

[3] Danny Ivanno Ritonga, Tri Danu Satria, Aqsa Mulya3-” IMPLEMENTATION OF

OPEN BROADCASTER SOFTWARE STUDIO IN MUSIC PERFORMANCE

MANAGEMENT THROUGH LIVE STREAMING

“(December 2021)

[4] Jesus Aguilar-Armijo, Christian Timmerer, Herman Hellwa - “Segment prefetching and

caching at the edge for adaptive video streaming” (3 March 2023).

[5] Lujie Zhong, Mu Wang, Chan Qiao Xu, Shujie Yang – “Optimization for adaptive video

streaming on edge cache assisted network. (24 March 2023).

[6] Joon-Young Jung, Jee Won Lee, Eun Hee Hyun “Performance analysis according to

segment length and buffer length of video streaming (7 August 2023).

[7] Yili Jin, Junhua LiuFangxin Wang, Shugang Cui “Edge-Assisted Multiuser 360° Video

Streami “ (3 April 2023).

